3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #11, San Diego, CA, USA, 21 – 24 May 2001
Tdoc N5-010306

· Source:
Ericsson, Ard.Jan.Moerdijk@eln.ericsson.se
Title:
Correction of the GCCS Call STD
Agenda Item:

Document for:
Decision/Approval

Category:
other

Work Item ID:
OSA
Doc Summary:

Specs involved:
TS 29.198, DES/SPAN-120070-4
Introduction

When looking at the method descriptions for getCallInfoReq and setCallChargePlan it reads that these methods must be invoked before routing the call to a target address. However, in the STD for the call object it shows that these methods can be invoked any time during the call, ie in the active state. This is clearly in conflict and as for most networks this functionality is also only allowed during setup phase of a call, we propose to change the STD to reflect the semantics of the methods.

· Additionally we propose to correct the following minor errors in the STD:

· The 3GPP STD shows twice the self-transition for “call supervision event” and “network event”, in the self-transition loop on top of the Active state and in the self-transtion on the lower right. The self transtion loops on top should be removed as we have the convention to show network related events on the lower right.

· SuperviseReq() and setCallChargePlan() are missing in the 3GPP STD.

· The ETSI STD shows twice the self-transition for “connection to called party unsuccessfull” in the “1 Party in call state: in the self-transition loop on top of the state and in the self-transtion on the lower right. The self transtion loop on top should be removed as we have the convention to show network related events on the lower right.

· setAdviceOfCharge() is shown in the “No parties” state, but not mentioned in the state description.

· routeReq() is missing in the “1 party in call state” of the STD.

· make more clear in the description of the “1 party in call state” that two cases apply: network initiated calls and application initiated calls.

· in case calling party abandons before the application can e.g. route the call to a called party, the application should be informed with only callEnded and no callFaultDetected should be invoked.

· alignment between 3GPP text and other text in states “Network released”, “2 parties in call”
Proposed changes in the specifications

We propose the following changes in the STD.

4.1.1
4.1.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object. This diagram shows only the part of the state transition diagram valid for 3GPP (UMTS) release 99.

[image: image1.wmf]Network Released

Finished

Application

Released

release

deassignCall

timeout ^callFaultDetected("timeout on release")

In state Idle a timer mechanism should

prevent that the object keeps occupying

resources. In case the timer expires, the

object should be destroyed and

callFaultDetected should be reported to

the application.

Active

2 Parties in

Call

1 Party in

Call

2 Parties in

Call

1 Party in

Call

IpAppCallControlManager.callEventNotify

routeReq[number of routing requests < 2]

"disconnect from called party"[monitor mode = interrupt] ^routeRes,

getCallInfoRes, superviseCallRes

"answer"

"connection to called party unsuccessful"[monitor mode = interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

"network event received for which was monitored[routeRes]

"call supervision event" ^superviseCallRes

deassignCall

release

"call ends : calling party disconnects" ^callEnded

"call ends: calling party abandoned" ^callEnded

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

"requested information ready"

^getCallInfoRes, superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

setCallChargePlan

getCallInfoReq

superviseCallReq

setAdviceOfCharge

4.1.2.1 Figure : 3GPP

4.1.2.2 Network Released State

4.1.2.3 In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). The information will be returned to the application by invoking the methods getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are used.In case the application has not requested additional call related information immediately a transition is made to state Idle.
4.1.2.4 Finished State

4.1.2.5 In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
4.1.2.6 Application Released State

4.1.2.7 In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.
4.1.2.8 No Parties State

4.1.2.9 In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to request Advice of Charge information to be sent by calling setAdviceOfCharge().
4.1.2.10 Active State

4.1.2.11 In this state a call between two parties is being setup or present. Refer to the substates for more details. The application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().
4.1.2.12 1 Party in Call State

In this state there is one party in the call.
In this state the application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a second party in the call party by means of routeReq().
Two cases apply: network initiated calls and application initiated calls.

In case the call originated from the network the application can now request for more digits in case more digits are needed.

When the calling party abandons the call before the application has invoked the routeReq() operation, the application is informed with callEnded(). When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
In case the call was setup by the application and the called party was reached by issueing a routeReq() the application can request a connection to a second call party by calling the operation routeReq() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, the call is ended or a transition is made back to the Routing to Destinations substate.
When the second party answers the call, a transition will be made to the 2 Parties in Call state.
In this state user interaction is possible.
For 3GPP, the following text applies:
When the Call is in this state a calling party is present. The application can now request that a connection to a called party be established by calling the method routeReq().
In this state the application can also request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
When the calling party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be established because the application supplied an invalid address or the connection to the called party was unsuccessful while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state
4.1.2.13 In this state user interaction is possible unless there is an outstanding routing request.
4.1.2.14 2 Parties in Call State

A connection between two parties has been established.
In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:
1.
the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the application is informed with routeRes with indication that the called party has disconnected and all requested reports are sent to the application. The application now again has control of the call.
2.
the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().
3.
the application is not monitoring for this event. In this case the application is informed by the gateway invoking the callEnded() operation and a transition is made to the Network Released state.
In this state user interaction is possible, depending on the underlying network.
4.1.2.15 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.
The state transition diagram shows the application view on the Call object.

[image: image3.wmf]Network Released

M

M

M

M

M

M

M

Finished

M

M

M

M

Application

Released

M

M

In state Finshed and No Parties a timer

mechanism should prevent that the object

keeps occupying resources. In case the

timer expires, the object should be

destroyed and callFaultDetected should be

reported to the application.

M

release

deassignCall

M

timeout ^callFaultDetected("timeout on release")

No Parties

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

release

deassign

createCall

Active

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

M

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

"disconnect from called party"[monitor mode = interrupt]

^routeRes, getCallInfoRes, superviseCallRes

IpAppCallControlManager.callEventNotify

IpAppCallControlManager.callEventNotify(Answer from call party)

routeReq[only 1 outstanding routeReq]

routeReq

getMoreDialledDigitsReq[no routeReq outstanding]

"network event received for which

was monitored[routeRes]

"call supervision event" ^superviseCallRes

release

M

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"call ends: calling party abandoned" ^callEnded

"call ends : calling party disconnects" ^callEnded

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

deassignCall

M

[no reports requested with getCallInfoReq AND

superviseCallReq]

M

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

M

"requested information

ready" ^getCallInfoRes,

superviseCallRes

M

[no reports requested with

getCallInfoReq AND

superviseCallReq]

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

"answer from called party"

"requests failed"[no more outstanding

routeReq operations] ^routeErr

"connection to called party unsuccessful"[no more

outstanding routeReq operations] ^routeRes

"connection to called party unsuccessful"[

monitor mode = interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

"answer"

"Digits collected" ^getMoreDialledDigitsRes

"Error in collecting digits" ^getMoreDialledDigitsErr

"party released"

"party released"[no more outstanding

requests]

setCallChargePlan

getCallInfoReq

routeReq

superviseCallReq

setAdviceOfCharge

4.1.2.16 Figure : Application view on the IpCall object

4.1.2.17 Network Released State

4.1.2.18 In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). The information will be returned to the application by invoking the methods getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are used.In case the application has not requested additional call related information immediately a transition is made to state Idle.
4.1.2.19 Finished State

4.1.2.20 In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
4.1.2.21 Application Released State

4.1.2.22 In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.
4.1.2.23 No Parties State

4.1.2.24 In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to request Advice of Charge information to be sent by calling setAdviceOfCharge().
4.1.2.25 Active State

4.1.2.26 In this state a call between two parties is being setup or present. Refer to the substates for more details. The application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().
4.1.2.27 1 Party in Call State

In this state there is one party in the call.
In this state the application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a second party in the call by means of routeReq().
Two cases apply: network initiated calls and application initiated calls.

In case the call originated from the network the application can now request for more digits in case more digits are needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the application is informed with callEnded(). When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
In case the call was setup by the application and the called party was reached by issueing a routeReq() the application can request a connection to a second call party by calling the operation routeReq() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, the call is ended or a transition is made back to the Routing to Destinations substate.
When the second party answers the call, a transition will be made to the 2 Parties in Call state.
In this state user interaction is possible.
For 3GPP, the following text applies:
When the Call is in this state a calling party is present. The application can now request that a connection to a called party be established by calling the method routeReq().
In this state the application can also request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
When the calling party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be established because the application supplied an invalid address or the connection to the called party was unsuccessful while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state
4.1.2.28 In this state user interaction is possible unless there is an outstanding routing request.
4.1.2.29 2 Parties in Call State

A connection between two parties has been established.
In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:
1.
the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the application is informed with routeRes with indication that the called party has disconnected and all requested reports are sent to the application. The application now again has control of the call.
2.
the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().
3.
the application is not monitoring for this event. In this case the application is informed by the gateway invoking the callEnded() operation and a transition is made to the Network Released state.
In this state user interaction is possible, depending on the underlying network.

4.1.2.30 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.
�PAGE \# "'Page: '#'�'" �� The Tdoc number for the CN5 plenary meeting will be allocated by the CN5 Secretary: Adrian ZOICAS (ETSI MCC), � HYPERLINK "mailto:Adrian.Zoicas@etsi.fr" ��Adrian.Zoicas@etsi.fr�

